19 research outputs found

    RAPA and Risk

    Get PDF
    Short article prepared by members of the professional organization Risk Assessment & Policy Association (RAPA) describing the work that will be undertaken by the newly formed group

    Modern optical astronomy: technology and impact of interferometry

    Get PDF
    The present `state of the art' and the path to future progress in high spatial resolution imaging interferometry is reviewed. The review begins with a treatment of the fundamentals of stellar optical interferometry, the origin, properties, optical effects of turbulence in the Earth's atmosphere, the passive methods that are applied on a single telescope to overcome atmospheric image degradation such as speckle interferometry, and various other techniques. These topics include differential speckle interferometry, speckle spectroscopy and polarimetry, phase diversity, wavefront shearing interferometry, phase-closure methods, dark speckle imaging, as well as the limitations imposed by the detectors on the performance of speckle imaging. A brief account is given of the technological innovation of adaptive-optics (AO) to compensate such atmospheric effects on the image in real time. A major advancement involves the transition from single-aperture to the dilute-aperture interferometry using multiple telescopes. Therefore, the review deals with recent developments involving ground-based, and space-based optical arrays. Emphasis is placed on the problems specific to delay-lines, beam recombination, polarization, dispersion, fringe-tracking, bootstrapping, coherencing and cophasing, and recovery of the visibility functions. The role of AO in enhancing visibilities is also discussed. The applications of interferometry, such as imaging, astrometry, and nulling are described. The mathematical intricacies of the various `post-detection' image-processing techniques are examined critically. The review concludes with a discussion of the astrophysical importance and the perspectives of interferometry.Comment: 65 pages LaTeX file including 23 figures. Reviews of Modern Physics, 2002, to appear in April issu

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Students’ Study Routines, Learning Preferences and Self-regulation: Are They Related?

    No full text
    Good self-regulatory skills and study habits seem to be essential conditions to students’ engagement with active learning approaches, critical thinking development and academic achievement. This exploratory research study aimed to assess possible relationships between students’ self-regulation, learning preferences and study routines towards their engagement in student-centered approaches. Seventy-nine undergraduate students from an integrated master program in Veterinary Medicine were surveyed at the beginning of a redesigned course. The Tangney’ short form of Self-Control Scale was used to measure students’ self-regulation, and a questionnaire with close and open-ended questions was applied to assess students’ study routines and learning preferences. The results revealed some associations between gender and self-regulation, and between self-regulation, study routines and learning preferences for the type class format. Female students presented higher self-regulation scores than male ones. Students with regular self-study habits also had higher self-regulation scores. Further research will analyze the relationship between students’ self-regulation, academic performance and critical thinking development, as well as the impact of active learning approaches in students’ study routines or learning preferences

    Performing the rural through game-angling

    Get PDF
    Using a performative approach this chapter focuses on how game-anglers, as a distinct cooperative of rural actors, have produced and continue to reproduce rural Britain in ways that are consistent with the scripts, social relations and embodied practices that have underpinned their sport since Victorian times. In doing so it considers how a seemingly innocuous activity that is game-angling brings to bear extremely powerful social and natural forces that work together to produce a negotiated sense and innate sensing of the rural. This rurality, when interrogated, reveals much about the way humans perform nature through assembling particular social constructions along with visceral cues and responses

    The population genetics of sporophytic self-incompatibility in Senecio squalidus L. (Asteraceae) I: S allele diversity in a natural population

    No full text
    Twenty-six individuals of the sporophytic self-incompatible (SSI) weed, Senecio squalidus were crossed in a full diallel to determine the number and frequency of S alleles in an Oxford population. Incompatibility phenotypes were determined by fruit-set results and the mating patterns observed fitted a SSI model that allowed us to identify six S alleles. Standard population S allele number estimators were modified to deal with S allele data from a species with SSI. These modified estimators predicted a total number of approximately six S alleles for the entire Oxford population of S. squalidus. This estimate of S allele number is low compared to other estimates of S allele diversity in species with SSI. Low S allele diversity in S. squalidus is expected to have arisen as a consequence of a disturbed population history since its introduction and subsequent colonisation of the British Isles. Other features of the SSI system in S. squalidus were also investigated: (a) the strength of self-incompatibility response; (b) the nature of S allele dominance interactions; and (c) the relative frequencies of S phenotypes. These are discussed in view of the low S allele diversity estimates and the known population history of S. squalidus.
    corecore